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Abstract

BNT-KNN powder (with composition 0.93Bi0.5Na0.5TiO3–0.07K0.5Na0.5NbO3) was synthesized as a single per-
ovskite phase by conventional solid state reaction route and dense ceramics were obtained by sintering of
powder compacts at 1100 °C for 4 h. Dielectric study confirmed relaxor behaviour, whereas the microstructure
study showed sharp cornered cubic like grains with an average grain size ∼1.15µm. The saturated polarization
vs. electric field (P-E) hysteresis loops confirmed the ferroelectric (FE) nature while the butterfly shaped strain
vs. electric field (S-E) loops suggested the piezoelectric nature of the BNT-KNN ceramic samples. Maximum
electric field induced strain of ∼0.62% suggested the usefulness of this system for actuator applications.
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I. Introduction

Electric field induced strain in a functional material
can be related to piezoelectric or electrostrictive phe-
nomena [1]. A piezoelectric material with high electric
field induced strain is useful in various actuator based
applications like: fuel injectors, ink cartridges, ultra-
sonic motors, etc. In piezoelectric materials, the elec-
tric field induced strain is accounted in terms of: (i)
extrinsic contribution due to non-180° domain switch-
ing and (ii) intrinsic contribution due to the change in
the dimension of the unit cell. Bi0.5Na0.5TiO3 (BNT)
system shows good ferroelectric (FE) and piezoelec-
tric properties at room temperature (RT), but there are
some critical issues associated with this system such as:
high coercive field (Ec) and high Curie’s temperature
(Tc), which goes against the use of this system in var-
ious device applications [2]. To overcome these disad-
vantages, binary solid solutions of BNT with BaTiO3
(BT), K0.5Na0.5NbO3 (KNN) etc. systems have been
proposed [3]. A ferroelectric system exhibits optimum
performance near the morphotrophic phase boundary
(MPB) compositions [4]. In BNT-KNN system, near RT
there exists MPB and FE to AFE phase transition tem-
perature, known as depolarization temperature (Td) [3].
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Near Td BNT-KNN system undergoes transition from
FE to anti-ferroelectric (AFE) phase, which results in di-
mensional change and high electric field induced strain
[2].

In the present study, 0.93BNT-0.07KNN powder was
synthesized as a single perovskite phase and sintered
into dense ceramics. Its structural, dielectric and elec-
tric field induced polarization and strain properties were
studied.

II. Material and methods

BNT-KNN (0.93Bi0.5Na0.5TiO3-0.07K0.5Na0.5NbO3)
powder was prepared using conventional solid-state
reaction route. Stoichiometric proportion of Bi2O3,
TiO2, Nb2O5, Na2CO3, BaCO3 and K2CO3 precur-
sors (all with 99.9% purity) was taken into a jar and
ball milled for 20 h in acetone using zirconia balls
as the grinding media. Calcination temperature of the
BNT-KNN sample was estimated by differential scan-
ning calorimetry - thermo gravimetric analysis (DSC-
TGA) of the dried ball milled powder in the temper-
ature range of RT to 1000 °C with a heating rate of
5 °C per minute using thermal analyser (Netzsch, Ger-
many STA449C/4/MFC/G). Subsequently, calcination
was carried out at 850 °C for 4 h in air and the single per-
ovskite phase formation was confirmed by powder X-
ray diffraction technique (Rigaku Ultima IV). Polyvinyl
alcohol binder solution (3 wt.%) was added to the cal-
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Figure 1. DSC-TGA plot of the uncalcined BNT-KNN
powder

cined powder and compressed into pellets of ∼10 mm in
diameter and ∼1.5 mm in thickness, using a hydraulic
press with 10 MPa pressure. The green pellets were sin-
tered at 1100 °C for 4 h. For electrical measurements,
silver paste was deposited on both sides of the sintered
pellets followed by firing at 400 °C for 30 minutes. Sin-
tered pellet micrograph was taken using field emission
scanning electron microscope (NOVA nano SEM). Di-
electric constant (εr) and dielectric loss (tan δ) variation
with frequency and temperature were carried out using
HIOKI 3532-50 LCR tester. RT polarization vs. electric
field and strain vs. electric field and temperature depen-
dent polarization vs. electric field behaviours were stud-
ied using Radiant precision premier II and with attached
MTI-2100 Fotonic sensor, respectively.

III. Results and discussion

DSC and TGA plots of the uncalcined BNT-KNN
powder, shown in Fig. 1, represent the variation of heat
flow in/out and the weight loss percentage with the

change in temperature, respectively. In DSC plot, the
heat flowing out of the samples points towards exother-
mic peak, whereas the heat flowing into the samples
points towards endothermic peak [5]. TGA plot shows
∼8% overall weight loss from RT to 1000 °C. Dis-
tinctly, TGA plot has two major weight loss regions,
the first one of ∼3% in temperature range between RT
and 130 °C, while the second one of ∼5% in temper-
ature range between 220 and 730 °C. The first weight
loss region can be related to vaporization of water [6,7],
whereas the second weight loss region can be accounted
in terms of decomposition of the starting precursors.
Corresponding to these two weight loss regions, en-
dothermic and exothermic peaks were observed in the
DSC plot. A small weight loss in the 800 to 1000 °C
temperature range corresponds to an exothermic peak
in DSC plot, which can be related to the crystallization
temperature of the BNT-KNN sample [8,9].

Figure 2 shows the XRD pattern and the deconvolu-
tion of the 200 peak of the sintered BNT-KNN ceramic
samples. The XRD peaks confirm development of sin-
gle perovskite phase, whereas sharp peaks indicate high
crystallinity of the sintered BNT-KNN ceramic samples
[10]. Deconvolution of the XRD peak 200, shown in
Fig. 2b, suggests the presence of∼53% of rhombohedral
and ∼47% of tetragonal structures in the BNT-KNN ce-
ramic samples. Rhombohedral phase (R.P) and tetrago-
nal phase (T.P) fractions [11] in the sintered sample are
calculated by using the following relations:

T.P =
I200T

+ I002T

I200T
+ I002T

+ I200N

(1)

R.P = 1 − T.P =
I200N

I200T
+ I002T

+ I200N

(2)

where, I is the integral intensity of the corresponding
XRD peak. Occurrence of double structure suggests the
MPB nature of the BNT-KNN ceramic samples [3,9].
Lattice parameters of rhombohedral crystal structure are

(a) (b)

Figure 2. XRD pattern (a) and deconvolution of XRD peak 200 (b) of the BNT-KNN ceramic samples
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Figure 3. FESEM micrograph of the BNT-KNN ceramic
samples

a = b = c = 5.4974 Å, α = β = γ = 90.08° with unit
cell volume ∼166.14 Å3, whereas, for tetragonal crystal
structure a = b = 5.4998 Å and c = 13.7274 Å, α = β =
γ = 90° with unit cell volume ∼415.23 Å3.

Figure 3 shows the FESEM micrograph of the sin-
tered BNT-KNN ceramic samples. The microstructure
reveals the dense, uniformly distributed and tightly
bounded sharp cornered cubic like grains. The average
grain size, calculated using linear intercept method [12],
was found to be ∼1.15µm.

Figure 4a shows the variation of εr with frequency.
Decrease of εr with the increase of frequency can be re-
lated to the decrease of net polarization [9]. Figure 4a
also shows the increase of tan δ with the increase of fre-
quency. At lower frequencies, all the polarizations fol-
low the varying AC field; whereas at higher frequencies
the dielectric relaxation processes sets in the BNT-KNN
ceramic samples, which lead to an increase in dielec-

tric loss with the increase of frequency [9,13]. Figure
4b shows two dielectric anomalies in the dielectric con-
stant vs. temperature (εr-T ) plot of the BNT-KNN ce-
ramic samples. The first dielectric anomaly at ∼125 °C
is attributed to the depolarization temperature (Td) [14],
whereas the second dielectric anomaly at ∼300 °C, cor-
responds to the Curie temperature Tc/Tm, which is re-
lated to the maximum dielectric constant [9,13,15]. This
suggests that AFE phase exists in the 125–300 °C tem-
perature range and pinched P-E hysteresis loops should
appear in the Td to Tc temperature range. Tm is found
to be frequency dependent, i.e. there is a shift towards
higher temperature side with the increase of frequency,
which is a typical characteristic of relaxor ferroelectric
materials. This relaxor nature may be attributed to the
dynamics of the A-site ions in the BNT-KNN system
[9,16].

Figure 5 shows the RT polarization and induced strain
vs. electric field hysteresis loops (at 10 Hz frequency)
of the BNT-KNN ceramic samples. Well saturated P-

E hysteresis loop with a maximum polarization (Pm) of
∼31 µC/cm2, remnant polarization (Pr) of ∼20 µC/cm2

and coercive field (Ec) of ∼26 kV/cm are observed. Well
saturated P-E loop indicates the FE nature of BNT-
KNN system at RT [8], also confirmed by the butterfly
shaped S-E loop [4,17]. The butterfly shaped S-E loop
is formed due to converse piezoelectric effect, switching
and movement of the domain walls [17]. From the RT
S-E loop (Fig. 5) it can be seen that maximum induced
strain of ∼0.62% and remnant strain of ∼0.18% are ob-
tained. Asymmetry in the S-E loop may be attributed to
the back switching of the domains during bipolar cy-
cling of the applied external electric field. This back
switching of domains during bipolar cycling accounts
polar order at zero electric field, which results in the
asymmetry of S-E loops [18].

The P-E loops at different temperatures are shown in
Fig. 6. Ferroelectricity of the BNT-KNN ceramic sam-
ples decreases with the increase of temperature. This
can be related to the decrease in interface energy of FE

Figure 4. Variation of εr and tan δ with (a) frequency (f ) and (b) temperature of the BNT-KNN ceramic samples
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Figure 5. Bipolar P-E and S-E loops of the BNT-KNN
ceramic samples

domains, which results in the easier domain wall move-
ment and slim P-E loops [13,19]. When the tempera-
ture is ≥140 °C, which corresponds to FE-AFE transi-
tion temperature (Td), deformed and pinched P-E hys-
teresis loops start appearing.

IV. Conclusions

Single perovskite phase BNT-KNN lead free ce-
ramic samples (with composition 0.93Bi0.5Na0.5TiO3-
0.07K0.5Na0.5NbO3) were prepared by conventional
solid state reaction route. Deconvolution of 200 XRD
peak revealed its MPB nature with 53% of rhombohe-
dral and 47% of tetragonal structures. FESEM micro-
graph showed dense and uniform distribution of grains.
Dielectric study confirmed the relaxor nature of BNT-
KNN ceramic samples. Transformation of FE to AFE

phase was confirmed separately by temperature depen-
dence dielectric and temperature dependent P-E loop
studies, respectively. High strain of ∼0.62% suggested
the usefulness of BNT-KNN system for actuator appli-
cations.
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